an lp-lq-version of morgan’s theorem for the generalized bessel transform

نویسندگان

ahmed abouelaz

radouan daher

loualid el mehdi

morocco

چکیده

n this article, we prove an lp-lq-version of morgan’s theorem for the generalized bessel transform.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN LP-LQ-VERSION OF MORGAN’S THEOREM FOR THE GENERALIZED BESSEL TRANSFORM

n this article, we prove An Lp-Lq-version of Morgan’s theorem for the generalized Bessel transform.

متن کامل

An Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator

The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.

متن کامل

an lp-lq-version of morgan's theorem for the generalized fourier transform associated with a dunkl type operator

the aim of this paper is to prove new quantitative uncertainty principle for the generalized fourier transform connected with a dunkl type operator on the real line. more precisely we prove an lp-lq-version of morgan's theorem.

متن کامل

GENERALIZATION OF TITCHMARSH'S THEOREM FOR THE GENERALIZED FOURIER-BESSEL TRANSFORM

In this paper, using a generalized translation operator, we prove theestimates for the generalized Fourier-Bessel transform in the space L2 on certainclasses of functions.

متن کامل

An Lp-Lq version of Hardy's theorem for spherical Fourier transform on semisimple Lie groups

We consider a real semisimple Lie group G with finite center and K a maximal compact subgroup of G. We prove an Lp −Lq version of Hardy’s theorem for the spherical Fourier transform on G. More precisely, let a, b be positive real numbers, 1 ≤ p, q ≤ ∞, and f a K-bi-invariant measurable function on G such that h−1 a f ∈ Lp(G) and eb‖λ‖ (f )∈ Lq(a∗ +) (ha is the heat kernel on G). We establish th...

متن کامل

An Lp-Lq-Version of Morgan's Theorem for the n-Dimensional Euclidean Motion Group

An aspect of uncertainty principle in real classical analysis asserts that a function f and its Fourier transform ̂ f cannot decrease simultaneously very rapidly at infinity. As illustrations of this, one has Hardy’s theorem [1], Morgan’s theorem [2], and BeurlingHörmander’s theorem [3–5]. These theorems have been generalized to many other situations; see, for example, [6–10]. In 1983, Cowling a...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
international journal of mathematical modelling and computations

جلد ۶، شماره ۱ (WINTER)، صفحات ۲۹-۳۵

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023